Low Energy (DTL) Linac

Milorad Popovic

Parmila

- Fermilab-TM-2245, April 8, 2004
- Using the PARMILA code running under PC-WINDOWS, the present performance of the Fermilab Drift Tube Linac has been analyzed in the light of new demands on the Linac/Booster complex (the Proton Source
- Proc. of the 1995 PAC, Vol. 2, pp. 917
 VAX Based.

Drift Tube Linac Tank 5

Drift Tube Linac Cell Geometry

Drift Tube Linac Tank 5

Drift Tube Linac Tank 5

Beam Envelopes

Spoke with RF Focusing

Los Alamos Neutron Science Center, LANSCE-1 Accelerator Physics and Engineering Group To/MS: Distribution

From MS: Robert Garnett, LANSCE-1, H817

Frank Krawczyk, LANSCE-1, H817

Rick Wood, LANSCE-1, H817

Phone/Fax: 5-2835/5-2904

Symbol: LANSCE-1:02-023

Date: March 28, 2002

RF-Focusing Spoke Resonator

In this memorandum we discuss the feasibility of using finger-like structures added to a spoke resonator cavity to superimpose a modest amount of electric quadrupole focusing onto *the* high axial accelerating field. The motivation for this idea is to possibly eliminate the need for magnetic focusing elements such as solenoids between the spoke cavities in a cryomodule at very-low beam velocities. This greatly improves the real-estate accelerating gradient by two methods. The most obvious is that there would be a much higher longitudinal packing factor, resulting in a proportionately higher real-estate gradient. Perhaps more significant though is that the shorter drift distances between accelerating clusters produces a

Spoke with RF Focusing

Figure 1 - Spoke geometry cut-away views.

Reentrant Pill Box

Simple Example

